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1. Introduction. Convergence of the single-parameter alternating direction 
methods of Douglas, Peaceman, and Rachford [1], [2], [3] has been proved for a wide 
class of elliptic difference equations; see, for example, Birkhoff and Varga [4]. The 
proof consists in showing that a certain matrix, similar to the defining matrix, has 
spectral radius less than one. Since the defining matrices for these methods are 
symmetric only when they are induced by a proper discretization of Laplace's equa- 
tion in a rectangular region, an estimate for their spectral radii does not imply a 
corresponding norm estimate for their rate of convergence. 

The purpose of this note is to present another proof of the convergence of the 
two basic alternating direction methods which, at the same time, provides a norm 
estimate for their rate of convergence. First, for simplicity, we shall consider 
Laplace's equation in an arbitrary, bounded lattice region. We shall prove that it is 
possible to select the acceleration parameter so that a suitable norm of the error is 
reduced after each iteration by the amount 1 - ch + 0(h2), where h is the uniform 
node spacing for the lattice, and c > 0 depends only on the minimal eigenvalue 
for the Laplace operator. We shall indicate only briefly the extension of these re- 
sults to elliptic equations with variable coefficients. 

Our proof of the convergence of the alternating direction methods was motivated 
by two considerations; first, the close resemblance of the iteration equations to 
parabolic difference equations, and second, an integral estimate technique for 
proving that, under suitable conditions, the solutions of parabolic differential 
equations decay exponentially. 

2. Formulation of the Problem. Let ? denote the (uniform) lattice of side h 
determined by the nodes (ah, Ah), a and A being integers, positive, negative, or 
zero. Denote by S any finite subset of ?. In the usual way [5], we decompose S 
into two disjoint subsets: S, the interior nodes of S, and AS, the boundary nodes 
of S. 

If Q is any subset of ?, we denote by e(Q) the linear space of all real-valued 
functions on ? whose support is contained in Q. (In general, the support of a function 
f is the closure of the set {p I f(p) 9 O} .) Note that e(S) is finite-dimensional with 
dimension equal to the number of nodes in S. The advantage of thus trivially ex- 
tending functions on Q to all of ? will become apparent later. 

We denote by A the usual "five-point" Laplace difference operator, i.e., 

Au = u + u,,q , u e (Q), 

where the subscripts x and y denote forward difference quotients, and x and g de- 
note backward difference quotients [61. 
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We shall be concerned, first, with the Dirichlet problem for the elliptic difference 
equation 

(1.1) Au f in S, 

where f e e(S). More precisely, we seek a function u e e( S) that satisfies (1.1) 
and assumes arbitrary prescribed values on 0S. 

It is easy to see that this problem is equivalent to the problem of solving a linear 
system of algebraic equations of order equal to the number of nodes in S. By means 
of the familiar maximum principle for the difference operator A, one can show that 
this system of linear equations always has a unique solution. In this paper we shall 
be concerned with the two basic, single-parameter alternating direction methods 
for the inversion of this system of equations. 

3. The Alternating Direction Methods. Let w(O) e ((S) be a function that agrees 
with u on AS, and otherwise arbitrary in S; w(O) will serve as the initial approxi- 
mation to u. Now, for n > 1, we determine two sequences of functions {w(n)} and 
{w*(n)} in C( S) such that 

(2.1) w(n) = w*(n) = u on AS, 

and 

(a) ,-7[w*(n) - w(n -1)] = wz(n) + wu(n - 1) - f 
(2.2) (b) ,'[w(n) - w*(n)] = wyg(n) - w(n-1) 

in S. Here p > 0, the so-called acceleration parameter, is to be selected later. These 
equations define what is usually referred to as the Douglas-Rachford alternating 
direction method for solving Au = f. 

In [3] it is shown that (2.1) and (2.2) determine uniquely (alternately) the 
functions w*(n) and w(n) in terms of w(n - 1) and the values of u on AS. This 
operation taking w(n - 1) into w(n) involves only the inversion of approximately 
2V/p tridiagonal matrices, where p is the number of nodes in S. 

Following Douglas and Rachford, we eliminate from (2.2) the auxiliary func- 
tion w*(n). Adding (2.2a) to (2.2b), we obtain the equation 

(2.3) Dw(n) = wX*(n) + wyu(n)- 

where we have introduced the notation 

Dw(n) = p-'[w(n) - w(n - 1)]. 

Solving (2.2b) for w*, we get 

w*(n) = w(n) -p2Dwyg(n). 

Hence, 

wX*(n) 
= 

w.(n)- 
2ADw(n), 

where A is defined as follows: 

Au = %.tyg 
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Putting the value just obtained for w.t(n) into (2.3), we find that w is a solution 
of the fifth-order difference equation 

(2.4) Dw = Aw -_p2ADw -f, in S, for n ? 1. 

The other alternating direction method, the Peaceman-Rachford method, is 
very similar to this; it is characterized by the equations 

p-[w*(n) - w(n -1) = wl(n) + w,,,(n -1) - f 
and 

pV'[w(n) - w*(n)] = wl(n) + wv(n)- f 
After eliminating from these equations the auxiliary function w*(n), we find that 
w is a solution of the fifth-order difference equation 

(2.5) Dw = 2Aw-pADw-p2ADw-2f in S, for n > 1. 

Our problem, now, is to show that w(n) -* u, as n -m o. 

4. Preparation. We define on C(S) an inner product (u, v) as follows: 

(u, v) = h2 E u(P)v(P). 
PC.e 

The norm (v, v)112 induced by this inner product will be denoted by 11 v 11 We re- 
quire two additional norms for e(S): 

11 V 
2 

= 11 = (11 V- j12)1/2 

and 
1l 8 11 2 =V (11 V 112 + 2 11 V 

2)1. 
2 

A subscript S will be placed on these quantities whenever we want to indicate that 
the sum is to be extended only over S. 

In [7] it is proved that the minimal eigenvalue X of the Laplace difference opera- 
tor A, relative to S, can be characterized as follows: 

X= inf li'is 
04avee(s) 11 V 112 

Since 11 v 11 s < jJ v I1 , it follows immediately that 

(3.1) Xjj v 112 < v 11 12? 

for all v e C(S). 
On the strength of this inequality, we now prove the 
LEMMA 1. Any function v e C(S) satisfies the inequality 

(3.2) II v 11 2 > X011 V 11 2, 

where 

(3.3) XO = Xp2 1 + 2Xp2h,-2 

Proof. We have from (3.1) and the definition of 1I V 11 2 that 

11 v 1112 - XI V 112 > _X211 V 112. 
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To this inequality we apply the elementary inequality [8] 

h2ll V ff2 _ 2f1 v f 2 

valid for all v e e(S), and we find that 

If v ffi2 - Xffl v ff2 > -2Xp 2h-2f 11 f2 

which is equivalent to (3.2). 

5. Convergence of the Alternating Direction Methods. Let u e e(S) be the 
solution of the Dirichlet problem for Au = f in S, and let w(n) be the correspond- 
ing solution of the Douglas-Rachford equation (2.4). Then, by linearity, the error 
function v(n) = u - w(n) belongs to the linear space e(S), and satisfies, for n > 1, 
the difference equation 

(4.1) PvDv-Av +p ADv = O 

in S. Let +(n) = (1 + pt)-n, where A > 0. One verifies immediately that 4 is a 
solution of the difference equation 

(4.2) Do = O 

THEOREM 1. If Au < X0, then the error function v(n) for the Douglas-Rachford 
method satisfies the inequalities 

If v(n) if< ?(n)ff v(O) |f (i = 1, 2) 

Proof. We set 

n 

(4.3) M = 2p -2 (v(t), Pv(q)). 
t.1 

Since v(t) e e(S), we see that M = 0. 
Introduce the function z(Q) e e(S) by means of the formula 

(4.4) v(W) = o(OZ(O. 

Then we have that 

Dv = qDz + zD4 - pD4'Dz 

which, in view of (4.2) becomes 

Dv = 0[aDz -,z], 

where a = +-l(1) > 0. 
From this and (4.1) it follows that 

(4.5) Pv = 4[aDz - liz - Az + a ADz _ p2AZ] = [aDz + Bz], 

where B is defined in the obvious way. 
Because of (4.5), (4.3) becomes 

n 

(4.6) Af = p E 2 Kz(t), aDz(t) + Bz(t))- 
t=1 
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We now recall from [8] the following quadratic difference identities 

(4.7) 2 (z, Dz) = DII z 112 + pil Dz 112, 

(4.8) 2 (2, ADz) = DI1 ziq 112 + pll Dzi 112 

(4.9) (Z, Az) = Z jj 

and 

(4.10) (z, Az-) = 2. z, 1l2 
Using these identities in (4.6), we obtain, after some slight rearrangement, the 

identity 
n 

(4.11) 
M = P E {aDjI Z 1122+ 2(11 z Illz2_ 11 Z 1122) + a2ll Dz 1122+ uall Dz 1ll2}. 

t=1 

Since 11 Z 11 2 > X011 Z 11 2, by Lemma 1, and _ < Xo, we have from (4.11) that 
n 

M 2 p Z aDjj z 1122= all z(n) 112- all z(O) 1122. 

But, since M = 0, we obtain from this and (4.4) that 

11 v(n) 112 = O(n) 11 z(n) 112 _ 0(n) II z(0) 112 = 4(n) II v(0) 112, 

which proves the second inequality of the theorem. 
Next, we set 

n 

(4.12) N = p , 0-2(t)ll Pv() 11S2. 
t=1 

Then, by (4.4) and (4.5), (4.12) becomes 
n 

N = p x 11 aDz(t) + Bz(s) 11s2. 

But 

II aDz + Bz 1S2 = a211 Dz 11s2+ II Bz 11s2+ 2a(Dz, Bz)s ? a2ll Dz 112 + 2a(Dz, Bz), 
where we have dropped the subscript S, because Dz e e(S). Hence, 

n 

(4.13) N > p 7 {a211 Dz 112 + 2a(Dz, Bz)}. 

Using the identities (4.7)-(4.10) again, we obtain from (4.13) the inequality 
n 

N - p E {a211 Dz 112 + aDII z 1l12_ AaDII z 1122+ apll Dz 112}. 
t=1 

Therefore, by adding a combination of the above inequalities, 
n 

N + AM _ pa 5 D||zI Z11. 

Again, N + uM = 0, so that 

11 z(n) ll1 < || z(O) ll1, 
which, in view of (4.4), implies that 

1I v(n) 11 _ 0(n)lI v(0) ll1. 
This completes the proof of the theorem. 



CONVERGENCE OF ALTERNATING DIRECTION METHODS 75 

Since pli > 0, Theorem 1 implies that the Douglas-Rachford method is con- 
vergent, but we also have the stronger result: 

THEOREM 2. If ,A = Xo and p = h/l/2X, then the error function v (n) for the Douglas- 
Rachford alternating direction method satisfies the inequalities 

(4.14) | v(n) 1i ? (1 + h) fl v(O) j l (i = 1, 2). 

Proof. The inequality (4.14) follows from Theorem 1, by minimizing +(n) as 
a function of p. 

In an analogous fashion, we can prove 
THEOREM 3. If u = 2Xo(1 - Xop)' and p = h/V2X, then the error function v(n) 

for the Peaceman-Rachford alternating direction method satisfies the inequality 

\4+ V Xh/ 

Note that the Peaceman-Rachford method has a smaller convergence factor. 
The preceding results can be extended to more general elliptic difference equa- 

tions, e.g., to those that come from elliptic differential equations of the form 

+(a(xY) Oa) + a b y) u f(x y) 

in a bounded, open set U. The functions a and b must belong to c'(Q). The main 
point that we wish to emphasize is that, because the inner product (u, v) is defined 
as a sum over all of 2, one must be able to extend a and b in a continuously differ- 
entiable way to a slightly larger set co D Q. This can be carried out, for instance, by 
means of the Whitney extension theorem [9], in a form given by H6rmander [10]. 

One can also show that similar results can be proved for the Douglas-Rachford 
method as applied to elliptic equations in n independent variables, although this 
is not the case with the Peaceman-Rachford method [8]. 
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